微分方程的初级问题
比如一个方程dy/dx=2x,两端积分是不是∫(dy/dx)dx=∫(2x)dx,那如果是这样,另一个微分方程dy/dx=2xy,用分离法后变成d...
比如一个方程dy/dx=2x,两端积分是不是∫ (dy/dx)dx=∫ (2x)dx,那如果是这样,另一个微分方程dy/dx=2xy,用分离法后变成dy/y=(2x)dx,这个两端积分是∫ dy/y=∫ (2x)dx,为什么这里不是∫ (dy/y)dx=∫ (2x)dx·dx ,为什么这个方程两端积分的时候没有两边同乘以dx?我才学这个,看到这,卡住了,不懂啊,谁来教教我,看看我的问题出在哪?请说详细一点
展开
1个回答
展开全部
第一个方程dy/dx=2x,两端积分其实一般不必写作∫
(dy/dx)dx=∫
(2x)dx,而就是变换成dy=(2x)dx,然后变换为∫dy=∫(2x)dx。。。。。
两边没必要同时乘以dx。若x是自变量,y是函数,则dx的含义是“自变量x的微分”,也就是“自变量x的增量”。
若你一定要把第二个方程两边积分后写成∫
(dy/y)dx=∫
(2x)dx·dx,那么也不是不可,记得y=f(x),dy=f'(x)d(x),那么用复合函数求导法则对两边进行运算后你会发现最终还是回到了∫dy=∫(2x)dx。。。。
(dy/dx)dx=∫
(2x)dx,而就是变换成dy=(2x)dx,然后变换为∫dy=∫(2x)dx。。。。。
两边没必要同时乘以dx。若x是自变量,y是函数,则dx的含义是“自变量x的微分”,也就是“自变量x的增量”。
若你一定要把第二个方程两边积分后写成∫
(dy/y)dx=∫
(2x)dx·dx,那么也不是不可,记得y=f(x),dy=f'(x)d(x),那么用复合函数求导法则对两边进行运算后你会发现最终还是回到了∫dy=∫(2x)dx。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询