已知x> 0,y>-1,且x+y=1,求x分之1+(y+1)分之2
2021-03-02 · 知道合伙人教育行家
关注
展开全部
∵ x+y=1,
∴ y=-x+1
∵ y>-1
∴ -x+1>-1
∴ -x>-2
∴ x<2
∵ x>0
∴ 0<x<2
∵ y=-x+1
∴ 1/x+2/(y+1) = 1/x+2/(-x+1+1) = 1/x-2/(x-2)
令f(x)=1/x-2/(x-2),
求导得:
f ′(x)=-1/x²+2/(x-2)²
= [-(x-2)²+2x²] /[x²(x-2)²]
= (x²+4x-4)/[x²(x-2)²]
= (x+2+2√2)(x+2-2√2)/[x²(x-2)²]
x属于(0,2√2-2)时,f(x)↓; x属于(2√2-2,2)时,f(x) ↑
当x=2√2-2时有最小值:
1/(2√2-2) - 2/(2√2-2-2) = 1/[2(√2-1)] + 1/(2-√2) = (√2+1)/2 + (2+√2)/(4-2) = (3+2√2)/2
∴ y=-x+1
∵ y>-1
∴ -x+1>-1
∴ -x>-2
∴ x<2
∵ x>0
∴ 0<x<2
∵ y=-x+1
∴ 1/x+2/(y+1) = 1/x+2/(-x+1+1) = 1/x-2/(x-2)
令f(x)=1/x-2/(x-2),
求导得:
f ′(x)=-1/x²+2/(x-2)²
= [-(x-2)²+2x²] /[x²(x-2)²]
= (x²+4x-4)/[x²(x-2)²]
= (x+2+2√2)(x+2-2√2)/[x²(x-2)²]
x属于(0,2√2-2)时,f(x)↓; x属于(2√2-2,2)时,f(x) ↑
当x=2√2-2时有最小值:
1/(2√2-2) - 2/(2√2-2-2) = 1/[2(√2-1)] + 1/(2-√2) = (√2+1)/2 + (2+√2)/(4-2) = (3+2√2)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询