高等数学(一)函数、极限、连续

 我来答
华源网络
2022-07-02 · TA获得超过5589个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:146万
展开全部

定义1、若对于每个数x∈D,变量y按照一定的规则总有一个确定的y和它对坦厅应,则称x是y的函数,记为y=f(x),常称x为自变量,y为因变量,D为定义域

①轮颂符号函数

 ②取整函数

表示不超过x的最大整数,例如[3.2]=3,其基本不等式

 ③狄里让桐隐克雷函数

定义2、设y=f(u)的定义域为D f ,u=g(x)的定义域为D g ,值域为R g ,若D f ∩R g ≠∅,则称函数y=f[g(x)]为函数y=f(u)和u=g(x)的符合函数,其定义域为{x|x∈Dg,g(x)∈D f }

定义3、设函数y=f(x)的定义域为D,值域为Ry,若对任意y=Ry,有唯一确定的x∈D,使得y=f(x),则记为x=f -1 (y)并称其为y=f(x)的反函数

定义4、将幂函数(y=xμ)、指数函数(y=ax),对数函数(y=logax),三角函数(y=sinx,y=cosx,y=tanx,y=cotx),反三角函数(y=arcsinx,y=arccosx,y=arctanx,y=arccotx)称为基本初等函数【熟记图像,定义域值域】

若对于区间I上任意两点x1<x2恒有f(x1)<f(x2)单调增,f(x1)>f(x2)单调减

常见的奇函数:

若存在T>0,对于任意x,恒有f(x+T)=f(x),则称y=f(x)为周期函数,使上式成立的最小正数T称为最小正周期

若存在M>0,使得对任意的x∈X,恒有|f(x)|≤M,则称f(x)在x上为有界函数

∀ε>0,∃N>0,当n>N时,恒有|X n -A|<ε

∀ε>0,∃x>0,当x>X时,恒有|f(x)-A|<ε

∀ε>0,∃x>0,当x<-X时,恒有|f(x)-A|<ε

∀ε>0,∃x>0,当|x|>X时,恒有|f(x)-A|<ε

∀ε>0,∃δ>0,当0<|x-x0|<δ时,恒有|f(x)-A|<ε

若存在N:当n>N时,x n ≤y n ≤z n ,且


单调有界数列必有极限

则称α(x)是β(x)的高阶无穷小,记为α(x)=o[β(x)]

则称α(x)是β(x)的低阶无穷小

则称α(x)是β(x)的同阶无穷小

则称α(x)是β(x)的等阶无穷小,记为α(x)~β(x)

特别地,若

则称α(x)是β(x)的k阶无穷小

在同一极限过程中,如果f(x)是无穷大,则1/f(x)是无穷小。反之,如果f(x)是无穷小,且f(x)≠0,则1/f(x)是无穷大

若limα(x)=0,limβ(x)=∞,且limα(x)β(x)=A,则limα(x)β(x)=e A

且limα 1 (x)/β(x)=A≠-1,则α(x)+β(x)~ α 1 (x)+ β 1 (x)

若limf(x)=limg(x)=0(∞),且f(x)和g(x)在x0的某去心领域内可导,且g’(x)≠0,limf'(x)/g'(x)存在(或无穷),则

其中R n (x)=o(x-x 0 ) n

常用的不等式:

定义1、若

则称y=f(x)在点x 0 处连续

若f(x)在x 0 的某去心领域内有定义,但在x 0 处不连续,则称x 0 为f(x)的间断点

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式