设A,B,A+B均为n阶可逆矩阵,证明:A^-1+B^-1为可逆矩阵,且写出(A^-1+B^-1). 我来答 1个回答 #热议# 普通体检能查出癌症吗? 天罗网17 2022-05-27 · TA获得超过6181个赞 知道小有建树答主 回答量:306 采纳率:100% 帮助的人:72.6万 我也去答题访问个人页 关注 展开全部 A(A^-1+B^-1)B =A+B 因此它念弊春空为可逆仔森族矩阵,且 (A^-1+B^-1)=A^-1(A+B)B^-1 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2021-10-15 设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并写出(A^-1+B^-1)^-1,写出过程,谢谢 6 2021-10-04 设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并求A^-... 2022-07-27 若A,B是n阶可逆矩阵,证明AB,A(B)^(-1)是可逆矩阵 2022-06-18 若A,B都是n阶可逆矩阵,证明:AB也是可逆矩阵,且(AB)^-1=B^-1*A^-1 2022-08-05 设A,B都为n阶可逆矩阵,证明(AB)*=B*A* 2022-06-03 设A B为n阶矩阵,且A B AB-I可逆,证明:A-(B的逆)可逆 2022-05-24 设A,B均为n阶可逆矩阵,求证:(AB)^*=B*A* 2022-08-30 设矩阵A,B及A+B都可逆,证明A^-1+B^-1也可逆,并求其矩阵 为你推荐: