利用单调有界定理证明an极限存在 an=(1+1/2)(1+1/2^2)……(1+1/2^n)

 我来答
新科技17
2022-06-01 · TA获得超过5901个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.7万
展开全部
  首先
    an = (1+1/2)(1+1/2^2)…(1+1/2^n)
单调递增是明显的;其次,由
  1 < an = (1-1/2)(1+1/2)(1+1/2^2)…(1+1/2^n)/(1-1/2)
 = 2(1-1/2^2)(1+1/2^2)…(1+1/2^n)
  = ……
  = 2[1-1/2^(n+1)]
  < 2,
得知{an}有界,据单调有界定理,{an}收敛.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式