从1-1994这些数中最多可以取多少个数 使这些数中任意两数的差都不是9

 我来答
玄策17
2022-05-28 · TA获得超过937个赞
知道小有建树答主
回答量:276
采纳率:100%
帮助的人:64.5万
展开全部
这些整数都可写成18k+i的形式(1≤i≤18,k≥0,i∈Z,k∈Z)
即:18k+1,18k+2,18k+3,18k+4,18k+5,18k+6,18k+7,18k+8,18k+9,
18k+10,18k+11,18k+12,18k+13,18k+14,18k+15,18k+16,18k+17,18k+18
对于任意2个数a=18k[1]+i[1]和b=18k[2]+i[2]
a-b=18(k[1]-k[2])+(i[1]-i[2])
若k[1]=k[2],根据mod(i,9)(i对9求余)可知,一个k对应的18个数中,最多只能取到9个数,两两之差不等于9;
这里不妨取1≤i≤9,则|i[1]-i[2]|18-9=9
所以这些数两两差不为9
因此,按以上取法可取得最多的数,以满足条件.
由18k+9≤1994,得:0≤k≤110
且k=111时,18k+1=1999>1994
所以k可取111个,每个k对应9个数
即最多可取111*9=999个
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式