正交矩阵一定是实对称矩阵吗?

 我来答
Zoie17980
2021-12-21 · TA获得超过2.6万个赞
知道小有建树答主
回答量:545
采纳率:100%
帮助的人:16.4万
展开全部

正交矩阵不一定是实对称矩阵

实对称矩阵有可能是正交矩阵,但是不是所有的实对称阵都是正交矩阵。 这里的P是是对称矩阵,且刚好P的逆等于P的转置,所以P也是正交矩阵。这只是一种特殊情况。如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵 。

正交矩阵的定理:

在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。

方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;A的列向量组也是正交单位向量组。

富港检测技术(东莞)有限公司_
2024-04-02 广告
应该说是:实对称阵属于不同特征值的的特征向量是正交的。设Ap=mp,Aq=nq,其中A是实对称矩阵,m,n为其不同的特征值,p,q分别为其对应得特征向量.则p1(Aq)=p1(nq)=np1q(p1A)q=(p1A1)q=(AP)1q=(m... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式