两边都是绝对值的不等式的题目越多越好?
展开全部
|a|表示数轴上的点a与原点的距离叫做数a的绝对值。
两个重要性质
- 1、|ab| = |a||b|(b≠0)
- 2、|a|<|b| 可逆推出 |b|>|a|||a| - |b|| ≤ |a+b| ≤ |a|+|b|,当且仅当 ab≤0 时左边等号成立,ab≥0 时右边等号成立。另外有:|a-b| ≤ |a|+|-b| = |a|+|-1|*|b| = |a|+|b|| |a|-|b| | ≤ |a±b| ≤ |a|+|b|
在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。它们都是通过非负数来度量的。
解决与绝对值有关的问题(如解绝对值不等式,解绝对值方程,研究含有绝对值符号的函数等等),其关键往往在于去掉绝对值符号。而去掉绝对值符号的基本方法有二。
以下,具体说说绝对值不等式的解法:
其一为平方,所谓平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了!
其二为讨论,所谓讨论,即x≥0时,|x|=x ;x<0时,|x|=-x,绝对值符号也没有了!
说到讨论,就是令绝对值中的式子等于0,分出x的段,然后根据每段讨论得出的x值,取交集,综上所述即可。
其三为数形结合法,即在数轴上将各点画出,将数转换为长度的概念求解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询