当n>2时,求证:logn(n-1)乘以logn(n 1)
1个回答
展开全部
下面写得都是以10为底的自然对数
由平均值不等式知
lg(n-1)lg(n+1)<{[lg(n-1)+lg(n+1)]/2}^2
<{[lgn^2]/2}^2=lgnlgn
所以[lg(n-1)/lgn][lg(n+1)/lgn]<1
即logn(n-1)logn(n+1)<1
由平均值不等式知
lg(n-1)lg(n+1)<{[lg(n-1)+lg(n+1)]/2}^2
<{[lgn^2]/2}^2=lgnlgn
所以[lg(n-1)/lgn][lg(n+1)/lgn]<1
即logn(n-1)logn(n+1)<1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
大雅新科技有限公司
2024-11-19 广告
2024-11-19 广告
这方面更多更全面的信息其实可以找下大雅新。深圳市大雅新科技有限公司从事KVM延长器,DVI延长器,USB延长器,键盘鼠标延长器,双绞线视频传输器,VGA视频双绞线传输器,VGA延长器,VGA视频延长器,DVI KVM 切换器等,优质供应商,...
点击进入详情页
本回答由大雅新科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询