已知n属于N,求证:logn(n+1)大于logn+1(n+2)
2个回答
展开全部
要证log(n)(n+1)>log(n+1)(n+2),
即要证lg(n+1)/lgn>lg(n+2)/lg(n+1)(换底公式)
即要证lg(n+1)lg(n+1)>lgnlg(n+2)
而由基本不等式
lgnlg(n+2)<((lgn+lg(n+2))/2)^2=(0.5lgn(n+2))^2
=(0.5lg(n+1-1)(n+1+1))^2
<(0.5lg(n+1)^2)^2
=lg(n+1)lg(n+1)
即log
n
(n+1)>log
n+1(n+2)(移项)
即要证lg(n+1)/lgn>lg(n+2)/lg(n+1)(换底公式)
即要证lg(n+1)lg(n+1)>lgnlg(n+2)
而由基本不等式
lgnlg(n+2)<((lgn+lg(n+2))/2)^2=(0.5lgn(n+2))^2
=(0.5lg(n+1-1)(n+1+1))^2
<(0.5lg(n+1)^2)^2
=lg(n+1)lg(n+1)
即log
n
(n+1)>log
n+1(n+2)(移项)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询