已知a+b+c>0,ab+bc+ca>0,abc>0,求证:a>0,b>0,c>0.
1个回答
展开全部
•假设a,b,c不全是正数,即其中至少有一个不是正数.
不妨先设a≤0.下面分a=0和a<0两种情况讨论.
如果a=0,则abc=0,与abc>0矛盾,所以a=0不可能.
如果a<0,那么由abc>0可得
bc<0.
又因为a+b+c>0,所以b+c>-a>0.
于是ab+bc+ca=a(b+c)+bc<0,
这和已知ab+bc+ca>0相矛盾.
因此,a<0也不可能.
综上所述,a>0.
同理可证b>0,c>0.
所以原命题成立.
不妨先设a≤0.下面分a=0和a<0两种情况讨论.
如果a=0,则abc=0,与abc>0矛盾,所以a=0不可能.
如果a<0,那么由abc>0可得
bc<0.
又因为a+b+c>0,所以b+c>-a>0.
于是ab+bc+ca=a(b+c)+bc<0,
这和已知ab+bc+ca>0相矛盾.
因此,a<0也不可能.
综上所述,a>0.
同理可证b>0,c>0.
所以原命题成立.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询