用极限定义证明,函数f(x)当x趋向于x0时极限存在的充要条件是左,右极限各自存在且相等

 我来答
妖感肉灵10
2022-11-16 · TA获得超过6.4万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.4亿
展开全部

设lim[x→x0+] f(x)=A,lim[x→x0-] f(x)=A

由lim[x→x0+] f(x)=A,则对于任意ε>0,存在δ1>0,当00,当 -δ2x0,则0<|x-x0|<δ≤δ1成立,

若x0,存在δ>0,当0<|x-x0|<δ时,有|f(x)-A|<ε成立

此时有:0

同理,此时有:-δ<x-x0<0 时,|f(x)-a|

扩展资料

用极限思想解决问题的一般步骤可概括为:

对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式