展开全部
令x1 x2=1得到f(1)=0
再令x2>x1>0
则x2/x1>1
∴f(x2/x1)<0
又f(x2/x1)=f(x2)-f(x1)<0
∴f(x2)<f(x1)
∴f(x)在定义域内递减
又2M-2N=f(x1)+f(x2)-2f[(x1+x2)/2]
=f(x1)-f[(x1+x2)/2]+f(x2)-f[(x1+x2)/2]
=f[2x1/(x1+x2)]+f[2x2/(x1+x2)]
=f[4x1x2/(x1+x2)^2]
又x1、x2均大于0
∴4x1x2/(x1+x2)^2<=1
∴f[4x1x2/(x1+x2)^2]>=0
即M>=N
再令x2>x1>0
则x2/x1>1
∴f(x2/x1)<0
又f(x2/x1)=f(x2)-f(x1)<0
∴f(x2)<f(x1)
∴f(x)在定义域内递减
又2M-2N=f(x1)+f(x2)-2f[(x1+x2)/2]
=f(x1)-f[(x1+x2)/2]+f(x2)-f[(x1+x2)/2]
=f[2x1/(x1+x2)]+f[2x2/(x1+x2)]
=f[4x1x2/(x1+x2)^2]
又x1、x2均大于0
∴4x1x2/(x1+x2)^2<=1
∴f[4x1x2/(x1+x2)^2]>=0
即M>=N
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询