e的-x次方的导数是什么?
展开全部
e的负x次方的导数为 -e^(-x)。
计算方法:
{ e^(-x) }′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)
本题中可以把-x看作u,即:
{ e^u }′ = e^u * u′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)。
导数与函数的性质:
可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。
如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询