高中数学的一道数列问题
1个回答
展开全部
1)S2/S1=6/2=3,
∴S2=3S1=3a1=3
∴a2=S2-S1=3-1=2,
d=a2-a1=2-1=d
∴{an}是首项为1,公差为1的等比数列
∴an=1+(n-1)=n
2)bn=n×p^n
若p=1,
则bn=n,
Tn=1+2+...+n=n(n+1)/2
若p≠1,
则Tn=p^1+2p^2+3p^3+...+np^n①
①×p得
pTn=p^2+2p^3+3p^4+...+np^(n+1)②
②-①得
(p-1)Tn=-p^1+(1-2)p^2+(2-3)p^3+...+[(n-1)-n]p^n+np^(n+1)
∴(p-1)Tn=-p-p^2-p^3-...-p^n+np^(n+1)=-p×(p^n-1)/(p-1)+np^(n+1)=[p-p^(n+1)]/(p-1)+np^(n+1)
∴Tn=[p-p^(n+1)]/(p-1)²+np^(n+1)/(p-1)
综上,p=1时Tn=n(n+1)/2;p≠1时,Tn=[p-p^(n+1)]/(p-1)²+np^(n+1)/(p-1)
∴S2=3S1=3a1=3
∴a2=S2-S1=3-1=2,
d=a2-a1=2-1=d
∴{an}是首项为1,公差为1的等比数列
∴an=1+(n-1)=n
2)bn=n×p^n
若p=1,
则bn=n,
Tn=1+2+...+n=n(n+1)/2
若p≠1,
则Tn=p^1+2p^2+3p^3+...+np^n①
①×p得
pTn=p^2+2p^3+3p^4+...+np^(n+1)②
②-①得
(p-1)Tn=-p^1+(1-2)p^2+(2-3)p^3+...+[(n-1)-n]p^n+np^(n+1)
∴(p-1)Tn=-p-p^2-p^3-...-p^n+np^(n+1)=-p×(p^n-1)/(p-1)+np^(n+1)=[p-p^(n+1)]/(p-1)+np^(n+1)
∴Tn=[p-p^(n+1)]/(p-1)²+np^(n+1)/(p-1)
综上,p=1时Tn=n(n+1)/2;p≠1时,Tn=[p-p^(n+1)]/(p-1)²+np^(n+1)/(p-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询