求函数y=2sinx-cos2x/1+sinx,x∈[-π/4,π/4]的最大值

sslm0031
2010-12-15 · TA获得超过1.2万个赞
知道小有建树答主
回答量:847
采纳率:0%
帮助的人:1512万
展开全部
y=(2sinx-cos^2x)/(1+sinx)
=[2sinx-1+(sinx)^2]/(1+sinx)
=[(1+sinx)^2-2]/(1+sinx)
=(1+sinx)-2/(1+sinx)
令:t=1+sinx
x∈[-π/4,π/4]
sinx∈[1-√2/2,1+√2/2]
则:y=t-2/t
因为:y=t和t=-2/t在[1-√2/2,1+√2/2]上都是增函数
所以 y=t-2/t在(0,2]上也是增函数
所以当t=1-√2/2时取得最小值,
最小值为
1-√2/2-2(1-√2/2)
=1-√2/2-4/(2-√2)
=1-√2/2-2(2+√2)
=1-√2/2-4-2√2
=-3-5√2/2
所以当t=1+√2/2时取得最大值,
最大值为
1+√2/2-2(1+√2/2)
=1+√2/2-4/(2+√2)
=1+√2/2-2(2-√2)
=1+√2/2-4+2√2
=-3+5√2/2
巅峰灬茄子
2010-12-15
知道答主
回答量:4
采纳率:0%
帮助的人:0
展开全部
太烦人
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式