设函数f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x属于【0,1/2】,使得f(x)=f(x+1/2)

哆嗒数学网
2010-12-17 · 教育领域创作者
个人认证用户
哆嗒数学网
采纳数:2537 获赞数:18810

向TA提问 私信TA
展开全部
令F(x)=f(x)-f(x+1/2)
有 F(0)=f(1)-f(1/2)
F(1/2)=f(1/2)-f(0)=f(1/2)-f(1)=-F(0)
所以F(0)与F(1/2)异号
所以一定存在t∈[0,1/2]使得F(t)=f(t)-f(t+1/2)=0
所以原命题得证
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式