一个函数具有对称性
,是轴对称,有公式f(x+T)=f(-x),还有没有别的公式,是怎么证明的?还有一个函数具有对称性,是中心对称的关系,有什么公式,像轴对称公式那样的?是怎么出来的证出来的...
,是轴对称,有公式f(x+T)=f(-x),还有没有别的公式,是怎么证明的?还有一个函数具有对称性,是中心对称的关系,有什么公式,像轴对称公式那样的?是怎么出来的证出来的?
如果详细易懂,还有20到30的追分,谢谢大家! 展开
如果详细易懂,还有20到30的追分,谢谢大家! 展开
3个回答
展开全部
设Ax+By+C=0上任意一点P'(x',y'),它关于直线x+y=0的对称点为P(x,y),则PP'的斜率=1,即(y-y')/(x-x')=…①,PP'的中点M((x+x')/2,(y+y')/2)在直线x+y=0上,∴(x+x')/2+(y+y')/2=0…②,由①,②得x'==-y.y'=-x,把它代入Ax'+By'+C=0即得A(-y)+B(-x)+C=0,
即Bx+Ay-C=0.
即Bx+Ay-C=0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)如果一函数关于轴x=T(T为常数)对称,则有f(x)=f(2T-x)或者f(x+T)=f(T-x)。
这个用解析几何来或者用代数来解释都很简单,也可以当作是证明。
一函数关于轴x=T(T为常数)对称,就是说作直线y=Y(Y为f(x)值域内任意常数),与f(x)相交两点A(a,Y)和B(b,Y),与x=T相交于C(T,Y),则C为AB的中点。
可得a=2T-b,或者a+T=T-x。
由直线y=Y在f(x)值域内的任意性,可知f(x)=f(2T-x)或者f(x+T)=f(T-x)。
一函数关于轴x=T(T为常数)对称,取任意一点P(x,f(x)),函数上必存在与其关于x=T的对称的点Q(q,f(q)),即点(T,f(x))为PQ的中点。用中点公式可得q=2T-x,f(q)=f(x),即f(x)=f(2T-x)。由P点的任意性可知该式在定义区成立。
类似的取P(x+T,f(x+T)),同样道理可证明f(x+T)=f(T-x)。
2)若一函数f(x)关于点O(a,b)中心对称,则有f(x)+f(2a-x)=2b或者f(a+x)+f(a-x)=2b。
任取P(x,f(x)),则必定可以在f(x)上找到点Q(q,f(q))且O(a,b)为PQ的中点。
q+x=2a 且f(q)+f(x)=2b,用x表示q,可得f(x)+f(2a-x)=2b。
类似设这个人任意点为P(x+a,f(x+a)),同样方法可得f(a+x)+f(a-x)=2b。
解析几何的方法和代数的方法其实是同一个本质,只是两种不同的叙述方法,只要理解透彻定义,加上一点代数的技巧或解析几何的直观,这类问题是很容易理解和证明的。
这个用解析几何来或者用代数来解释都很简单,也可以当作是证明。
一函数关于轴x=T(T为常数)对称,就是说作直线y=Y(Y为f(x)值域内任意常数),与f(x)相交两点A(a,Y)和B(b,Y),与x=T相交于C(T,Y),则C为AB的中点。
可得a=2T-b,或者a+T=T-x。
由直线y=Y在f(x)值域内的任意性,可知f(x)=f(2T-x)或者f(x+T)=f(T-x)。
一函数关于轴x=T(T为常数)对称,取任意一点P(x,f(x)),函数上必存在与其关于x=T的对称的点Q(q,f(q)),即点(T,f(x))为PQ的中点。用中点公式可得q=2T-x,f(q)=f(x),即f(x)=f(2T-x)。由P点的任意性可知该式在定义区成立。
类似的取P(x+T,f(x+T)),同样道理可证明f(x+T)=f(T-x)。
2)若一函数f(x)关于点O(a,b)中心对称,则有f(x)+f(2a-x)=2b或者f(a+x)+f(a-x)=2b。
任取P(x,f(x)),则必定可以在f(x)上找到点Q(q,f(q))且O(a,b)为PQ的中点。
q+x=2a 且f(q)+f(x)=2b,用x表示q,可得f(x)+f(2a-x)=2b。
类似设这个人任意点为P(x+a,f(x+a)),同样方法可得f(a+x)+f(a-x)=2b。
解析几何的方法和代数的方法其实是同一个本质,只是两种不同的叙述方法,只要理解透彻定义,加上一点代数的技巧或解析几何的直观,这类问题是很容易理解和证明的。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询