已知椭圆x^2/4+y^2/3=1,试确定m的取值范围,使得对于直线y=4x+m椭圆上总有不同的两点关于该直线对称
2个回答
2014-02-24
展开全部
设椭圆上两点A(x1,y1)、B(x2,y2) 关于直线y=4x+m对称,
AB中点为M(x0,y0)。则
3x1^2+4y1^2=12
3x2^2+4y2^2=12
相减得到:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0
由于M是AB的中点,所以x1+x2=2x0,y1+y2=2y0
既6x0(x1-x2)+8y0(y1-y2)=0
则k=y1-y2/x1-x2=-3x0/4y0=-1/4.
y0=3x0.代入直线方程y=4x+m
得x0=-m,y0=-3m
因为(x0,y0)在椭圆内部。则3m^2+4(-3m)^2<12
解得 -2√13/13<m<2√13/13
补充:利用点差法和对称关系得到x0和y0的关系是关键。
AB中点为M(x0,y0)。则
3x1^2+4y1^2=12
3x2^2+4y2^2=12
相减得到:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0
由于M是AB的中点,所以x1+x2=2x0,y1+y2=2y0
既6x0(x1-x2)+8y0(y1-y2)=0
则k=y1-y2/x1-x2=-3x0/4y0=-1/4.
y0=3x0.代入直线方程y=4x+m
得x0=-m,y0=-3m
因为(x0,y0)在椭圆内部。则3m^2+4(-3m)^2<12
解得 -2√13/13<m<2√13/13
补充:利用点差法和对称关系得到x0和y0的关系是关键。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询