求数列{1/n(n+2)}前n项和
2014-03-17 · 知道合伙人金融证券行家
关注
展开全部
1/n-1/(n+2)=(n+2)/n(n+2) - n/n(n+2) = 2/n(n+2)
2An=1/n - 1/(n+2)
2Sn=1/1 - 1/3 + 1/2 -1/4 + 1/3 - 1/5 + 1/4 - 1/6 + ... + 1/(n-3) - 1/(n-1) + 1/(n-2) - 1/n+ 1/(n-1) - 1/(n+1) + 1/n - 1/(n+2)
=1+1/2-1/(n+1) - 1/(n+2)
=3/2 - (2n+3)/[(n+1)(n+2)]
Sn=3/4 - 1/[2(n+1)(n+2)]
2An=1/n - 1/(n+2)
2Sn=1/1 - 1/3 + 1/2 -1/4 + 1/3 - 1/5 + 1/4 - 1/6 + ... + 1/(n-3) - 1/(n-1) + 1/(n-2) - 1/n+ 1/(n-1) - 1/(n+1) + 1/n - 1/(n+2)
=1+1/2-1/(n+1) - 1/(n+2)
=3/2 - (2n+3)/[(n+1)(n+2)]
Sn=3/4 - 1/[2(n+1)(n+2)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/[n(n+2)]=(1/2)[1/n -1/(n+2)]
Tn=(1/2)[1/1-1/3+1/2-1/4+...+1/n-1/(n+2)]
=(1/2)[(1/1+1/2+...+1/n)-(1/3+1/4+...+1/(n+2))]
=(1/2)[1/1+1/2 -1/(n+1)-1/(n+2)]
=(3/4) -1/[2(n+1)] -1/[2(n+2)]
Tn=(1/2)[1/1-1/3+1/2-1/4+...+1/n-1/(n+2)]
=(1/2)[(1/1+1/2+...+1/n)-(1/3+1/4+...+1/(n+2))]
=(1/2)[1/1+1/2 -1/(n+1)-1/(n+2)]
=(3/4) -1/[2(n+1)] -1/[2(n+2)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:n=1/n(n +2)=[1/n-1/(n+2)]/2
Sn=[1/1-1/3+1/2-1/4+1/3-1/5+、、、+1/(n-2)-1/n+1/(n-1)-1/(n+1)+1/n-1/(n+2)]/2
=3/4-1/2(n+2)
S1=1/3
S2=1/3+1/8。
Sn=[1/1-1/3+1/2-1/4+1/3-1/5+、、、+1/(n-2)-1/n+1/(n-1)-1/(n+1)+1/n-1/(n+2)]/2
=3/4-1/2(n+2)
S1=1/3
S2=1/3+1/8。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-03-17
展开全部
1/n(n 2)=1/n-1/(n 2)
前n项和=1+1/2-1/(n 1)-1/(n 2)=3/2-1/(n 1)-1/(n 2)
前n项和=1+1/2-1/(n 1)-1/(n 2)=3/2-1/(n 1)-1/(n 2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询