已知方程2x²-(根号3+1)x+m=0的两个根分别为sinθ,cosθ,求[sin(π-θ)×t
已知方程2x²-(根号3+1)x+m=0的两个根分别为sinθ,cosθ,求[sin(π-θ)×tan(π+θ)/tanθ-1]+[cos(2π-θ)/1-ta...
已知方程2x²-(根号3+1)x+m=0的两个根分别为sinθ,cosθ,求[sin(π-θ)×tan(π+θ)/tanθ-1]+[cos(2π-θ)/1-tanθ]
展开
1个回答
展开全部
解:x1+x2=-b/a,x1*x2=c/a
所以sinθ+cosθ=(√3+1)/2
sinθ*cosθ=m/2
(sinθ+cosθ)²=1+√3/2
即:sin²θ+cos²θ+2sinθ*cosθ=1+√3/2
1+m=1+√3/2
m=√3/2
又因为
sin(π-α) = sinα
tan(π+α)=tanα
cos(2π-α) = cosα
所以原式=[sinθ*tanθ/(tanθ-1)]+[cosθ/(1-tanθ)]
=sin²θ/(sinθ-cosθ)+cos²θ/(cosθ-sinθ)
=(sin²θ-cos²θ)/(sinθ-cosθ)
=sinθ+cosθ=1+√3/2
所以sinθ+cosθ=(√3+1)/2
sinθ*cosθ=m/2
(sinθ+cosθ)²=1+√3/2
即:sin²θ+cos²θ+2sinθ*cosθ=1+√3/2
1+m=1+√3/2
m=√3/2
又因为
sin(π-α) = sinα
tan(π+α)=tanα
cos(2π-α) = cosα
所以原式=[sinθ*tanθ/(tanθ-1)]+[cosθ/(1-tanθ)]
=sin²θ/(sinθ-cosθ)+cos²θ/(cosθ-sinθ)
=(sin²θ-cos²θ)/(sinθ-cosθ)
=sinθ+cosθ=1+√3/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询