关于材料力学的强度理论
在强度理论中,各个强度理论的运用要求是在单轴应力状态下。但是第三强度理论中,既然有σ1-σ3这式就不是单轴应力状态了,为什么要求还是在单轴应力状态下使用?而且在实际计算过...
在强度理论中,各个强度理论的运用要求是在单轴应力状态下。但是第三强度理论中,既然有σ1-σ3这式就不是单轴应力状态了,为什么要求还是在单轴应力状态下使用?而且在实际计算过程中,某等直低碳钢同时发生扭转和和拉伸,这样明显不是单轴应力状态,为什么在进行强度校核时仍然运用第三强度理论?希望高人能为我解答,感激不尽!
展开
1个回答
2014-01-11
展开全部
先说下,不是原创 四大强度理论
1、最大拉应力理论(第一强度理论):
这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:
σ1=σb。σb/s=[σ]
所以按第一强度理论建立的强度条件为:
σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):
这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。由广义虎克定律得:
ε1=[σ1-u(σ2+σ3)]/E
所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:
σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):
这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
τmax=τ0。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)
由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):
这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力
状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
发生塑性破坏的条件为:
所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]
1、最大拉应力理论(第一强度理论):
这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:
σ1=σb。σb/s=[σ]
所以按第一强度理论建立的强度条件为:
σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):
这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。由广义虎克定律得:
ε1=[σ1-u(σ2+σ3)]/E
所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:
σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):
这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
τmax=τ0。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)
由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):
这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力
状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
发生塑性破坏的条件为:
所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]
物声科技2024
2024-10-28 广告
2024-10-28 广告
在力学试验过程监测中,北京物声科技有限公司采用高精度传感器与先进的数据采集系统,实时捕捉试验中的力学参数变化。通过实时监测,我们能确保试验数据的准确性和可靠性,及时发现并处理异常情况。我们的监测系统具有高度的稳定性和灵敏度,能够适用于多种复...
点击进入详情页
本回答由物声科技2024提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询