如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4
如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,是否...
如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,是否存在一点E使△CDE的周长取得最小值?若存在,求点E的坐标并证明;若不存在,请说明理由.(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.
展开
1个回答
展开全部
解:(1)如图,作点D关于x轴的对称点D',连接CD'与x轴交于点E,连接DE.(1分)
若在边OA上任取点E'(与点E不重合),连接CE'、DE'、D'E'.
由DE'+CE'=D'E'+CE'>CD'=D'E+CE=DE+CE,(3分)
可知△CDE的周长最小.尘誉
∵在矩形OACB中,OA=3,OB=4,D为OB的中点,
∴BC=3,D'O=DO=2,D'B=6.
∵OE∥BC,
∴Rt△D'OE∽Rt△D'BC,(4分)
有
=
.
∴OE=
=
=1(5分)
∴点E的坐标为(1,0)(6分)
(2)如图派大段,
作点D关于x轴的对称点D',在CB边上截取CG=2,连接D'G与x轴交于点E,在EA上截取EF=2(7分)
∵GC∥EF,GC=EF,
∴四边形GEFC为平行四边形,有GE=CF.
又DC、EF的长为定值,
∴此时得到的点E、F使四边形CDEF的周长最小(8分)
∵OE∥BC,
∴Rt△D'OE∽Rt△D'BG,有
=
.
∴OE=
=
=
=
(9分)
∴OF=OE+EF=
+2=
.
∴点E的坐标为(
,0),点F的坐标仿桐为(
,0)(10分)
若在边OA上任取点E'(与点E不重合),连接CE'、DE'、D'E'.
由DE'+CE'=D'E'+CE'>CD'=D'E+CE=DE+CE,(3分)
可知△CDE的周长最小.尘誉
∵在矩形OACB中,OA=3,OB=4,D为OB的中点,
∴BC=3,D'O=DO=2,D'B=6.
∵OE∥BC,
∴Rt△D'OE∽Rt△D'BC,(4分)
有
OE |
BC |
D′O |
D′B |
∴OE=
D′O?BC |
D′B |
2×3 |
6 |
∴点E的坐标为(1,0)(6分)
(2)如图派大段,
作点D关于x轴的对称点D',在CB边上截取CG=2,连接D'G与x轴交于点E,在EA上截取EF=2(7分)
∵GC∥EF,GC=EF,
∴四边形GEFC为平行四边形,有GE=CF.
又DC、EF的长为定值,
∴此时得到的点E、F使四边形CDEF的周长最小(8分)
∵OE∥BC,
∴Rt△D'OE∽Rt△D'BG,有
OE |
BG |
D′O |
D′B |
∴OE=
D′O?BG |
D′B |
D′O?(BC?CG) |
D′B |
2×1 |
6 |
1 |
3 |
∴OF=OE+EF=
1 |
3 |
7 |
3 |
∴点E的坐标为(
1 |
3 |
7 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询