如图,已知在矩形ABCD中,AD=10,CD=5,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同

如图,已知在矩形ABCD中,AD=10,CD=5,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度... 如图,已知在矩形ABCD中,AD=10,CD=5,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,当B、E、F三点共线时,两点同时停止运动,此时BF⊥CE.设点E移动的时间为t(秒).(1)求当t为何值时,两点同时停止运动;(2)求当t为何值时,EC是∠BED的平分线;(3)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写出t的取值范围;(4)求当t为何值时,△EFC是等腰三角形.(直接写出答案) 展开
 我来答
曾经霸气1kE
2014-10-15 · 超过73用户采纳过TA的回答
知道答主
回答量:130
采纳率:0%
帮助的人:134万
展开全部
解:(1)当B,E,F三点共线时,两点同时停止运动,如图所示.
由题意可知:ED=t,BC=10,FD=2t-5,FC=2t.
∵ED∥BC,
∴△FED∽△FBC.
FD
FC
=
ED
BC

2t-5
2t
=
t
10

解得t=5.
∴当t=5时,两点同时停止运动;

(2)在Rt△BCF和Rt△CDE中,
∵∠BCF=∠CDE=90°,
BC
CD
=
CF
ED
=2,
∴Rt△BCF∽Rt△CDE.
∴∠BFC=∠CED.                              
∵AD∥BC,
∴∠BCE=∠CED.若∠BEC=∠BFC,则∠BEC=∠BCE.即BE=BC.
∵52+(10-t)2=102
解得 t1=10+5
3
(舍去),t2=10-5
3

即当t=10-5
3
时,EC是∠BED的平分线.         

(3)分两种情况讨论:①当F在线段CD上时:S四边形BCFE=S梯形BCDE-S△EDF=
1
2
(t+10)×5-
1
2
t(5-2t)=t2+25;
②当F在CD延长线上时:
S四边形BCFE=S梯形BCDE+S△EDF=
1
2
(t+10)×5-
1
2
t(2t-5)=t2+25;
∴S=t2+25(0≤t≤5);

(4)△EFC是等腰三角形有三种情况:
①若EF=EC时,则点F只能在CD的延长线上,
∵EF2=(2t-5)2+t2=5t2-20t+25,
EC2=52+t2=t2+25,
∴5t2-20t+25=t2+25.
∴t=5或t=0(舍去);
②若EC=FC时,
∵EC2=52+t2=t2+25,FC2=4t2
∴t2+25=4t2
∴t=
5
3
3

③若EF=FC时,
∵EF2=(2t-5)2+t2=5t2-20t+25,FC2=4t2
∴5t2-20t+25=4t2
∴t1=10+5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消