如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段AB上的一动点(不与A、B重
如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段AB上的一动点(不与A、B重合),坐标为(m,1-m)(m为常数).(1)求经过O、P、B...
如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段AB上的一动点(不与A、B重合),坐标为(m,1-m)(m为常数).(1)求经过O、P、B三点的抛物线的解析式;(2)当P点在线段AB上移动时,过O、P、B三点的抛物线的对称轴是否会随着P的移动而改变;(3)当P移动到点(12,12)时,请你在过O、P、B三点的抛物线上至少找出两点,使每个点都能与P、B两点构成等腰三角形,并求出这两点的坐标.
展开
1个回答
展开全部
解答:解:(1)设抛物线的解析式为y=ax2+bx+c,
因为抛物线过原点O(0,0).所以c=0.
,
.
所以y=-
x2+
x;
(2)由(1)可知抛物线的对称轴是x=-
=
.
所以它不会随P的移动而改变;
(3)点O(0,0)可满足.
设抛物线的对称轴与x轴交于K,过K作PB的垂直平分线交抛物线于Q1,Q2两点,则△Q1PB,△Q2PB是等腰三角形.
∵直线PB的解析式为:y=-x+1,
∴Q1Q2的解析式是:y=x-
,抛物线的解析式为:y=-2x2+2x.
所以直线和抛物线的交点Q1,Q2两点的坐标是(
,
),(
,-
).
因为抛物线过原点O(0,0).所以c=0.
|
|
所以y=-
1 |
m |
1 |
m |
(2)由(1)可知抛物线的对称轴是x=-
| ||
2×(?
|
1 |
2 |
所以它不会随P的移动而改变;
(3)点O(0,0)可满足.
设抛物线的对称轴与x轴交于K,过K作PB的垂直平分线交抛物线于Q1,Q2两点,则△Q1PB,△Q2PB是等腰三角形.
∵直线PB的解析式为:y=-x+1,
∴Q1Q2的解析式是:y=x-
1 |
2 |
所以直线和抛物线的交点Q1,Q2两点的坐标是(
| ||
4 |
| ||
4 |
1?
| ||
4 |
| ||
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询