如图,平面直角坐标系中,四边形OABC为直角梯形,CB∥OA,∠OCB=90°,CB=1,AB=5,直线y=?12x+1过A点,

如图,平面直角坐标系中,四边形OABC为直角梯形,CB∥OA,∠OCB=90°,CB=1,AB=5,直线y=?12x+1过A点,且与y轴交于D点(1)求点A、点B的坐标;... 如图,平面直角坐标系中,四边形OABC为直角梯形,CB∥OA,∠OCB=90°,CB=1,AB=5,直线y=?12x+1过A点,且与y轴交于D点(1)求点A、点B的坐标;(2)试说明:AD⊥BO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由. 展开
 我来答
刻苦且无私的彩旗506
推荐于2016-06-15 · 超过67用户采纳过TA的回答
知道答主
回答量:128
采纳率:60%
帮助的人:63.6万
展开全部
(1)当y=0时,-
1
2
x+1=0,
解得x=2,
∴点A的坐标是(2,0),
过点B作BF⊥AO于F,则四边形BCOF是矩形,
∴OF=BC=1,
∴AF=2-1=1,
∵AB=
5

∴在Rt△ABF中,BF=
AB2?AF2
=
5
2
?12
=2,
∴点B的坐标为(1,2);

(2)当x=0时,y=-
1
2
×0+1=1,
∴点D的坐标为(0,1),
∴OD=BC=1,
根据(1)的结论,四边形BCOF是矩形,
∴OC=BF=2,
∴AO=OC=2,
在△AOD与△OCB中,
OD=BC
∠AOD=∠OCB=90°
AO=OC

∴△AOD≌△OCB(SAS),
∴∠OAD=∠COB,
∵∠COB+∠AOB=90°,
∴∠OAD+∠AOB=90°,
∴∠AEO=90°,
∴AD⊥BO;

(3)存在.
∵点N在x轴上,O、B、M、N为顶点的四边形是平行四边形,
∴BM∥x轴,且BM=ON,
根据(1),点B的坐标为(1,2),
∴-
1
2
x+1=2,
解得x=-2,
∴点M的坐标为(-2,2),
∴BM=1-(-2)=1+2=3,
①点N在点O的左边时,ON=BM=3,
∴点N的坐标为(-3,0),
②点N在点O的右边时,ON=BM=3,
∴点N的坐标为(3,0),
③作N(-3,0)关于A对称的点N′,则N′也符合,
点N′的坐标是(7,0),
综上所述,点N的坐标为(-3,0)或(3,0)或(7,0).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式