用牛顿-莱布尼茨公式计算定积分 要过程

 我来答
匿名用户
2014-12-13
展开全部

 

更多追问追答
追答
∫ a dx = ax + C,a和C都是常数  
∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1  
∫ 1/x dx = ln|x| + C   
∫ a^x dx = (a^x)/lna + C,其中a > 0 且 a ≠ 1  
∫ e^x dx = e^x + C   
∫ cosx dx = sinx + C   
∫ sinx dx = - cosx + C  
∫ cotx dx = ln|sinx| + C   
∫ tanx dx = - ln|cosx| + C = ln|secx| + C   
∫ secx dx = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = ln|secx + tanx| + C  
∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C  
∫ sec^2(x) dx = tanx + C   
∫ csc^2(x) dx = - cotx + C   
∫ secxtanx dx = secx + C  
∫ cscxcotx dx = - cscx + C   
∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C   
∫ dx/√(a^2 - x^2) = arcsin(x/a) + C   
∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C  
∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C   
∫ √(x^2 - a^2)dx=x/2√(x^2 - a^2)-a^2/2ln[x+√(x^2 - a^2)] + C  
∫ √(x^2 +a^2)dx=x/2√(x^2 +a^2)+a^2/2ln[x+√(x^2 +a^2)] + C  
∫ √(a^2 - x^2)dx=x/2√(a^2 - x^2)+a^2/2arcsin(x/a) + C
书上有
匿名用户
2014-12-13
展开全部

 

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-12-13
展开全部
原式=arctanx(根号3.1)
更多追问追答
追答
等于3分之派减去4分之派
12分之派
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式