如图所示.直角梯形ABCD中,AD∥BC,∠A=90°,∠ADC=135°,CD的垂直平分线交BC于N,交AB延长线于F,垂

如图所示.直角梯形ABCD中,AD∥BC,∠A=90°,∠ADC=135°,CD的垂直平分线交BC于N,交AB延长线于F,垂足为M.求证:AD=BF.... 如图所示.直角梯形ABCD中,AD∥BC,∠A=90°,∠ADC=135°,CD的垂直平分线交BC于N,交AB延长线于F,垂足为M.求证:AD=BF. 展开
 我来答
宮平专用d4a
2014-12-27 · 超过50用户采纳过TA的回答
知道答主
回答量:101
采纳率:0%
帮助的人:104万
展开全部
解答:证明:连接DN,
∵N是线段DC的垂直平分线MF上的一点,
∴ND=NC.
已知AD∥BC及∠ADC=135°,
∴∠C=45°,
∴∠NDC=45°(等腰三角形性质).
在△NDC中,∠DNC=90°(三角形内角和定理),
∴ABND是矩形,
∴AF∥ND,∠F=∠DNM=45°.
∴△BNF是一个含有锐角45°的直角三角形,
∴BN=BF,已证得AD=BN,
∴AD=BF.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式