在平面直角坐标系中,已知函数y1=2x和函数y2=-x+6,不论x取何值,y0都取y1与y2二者之中的较小值.(1)求

在平面直角坐标系中,已知函数y1=2x和函数y2=-x+6,不论x取何值,y0都取y1与y2二者之中的较小值.(1)求y0关于x的函数关系式;(2)现有二次函数y=x2-... 在平面直角坐标系中,已知函数y1=2x和函数y2=-x+6,不论x取何值,y0都取y1与y2二者之中的较小值.(1)求y0关于x的函数关系式;(2)现有二次函数y=x2-8x+c,若函数y0和y都随着x的增大而减小,求自变量x的取值范围;(3)在(2)的结论下,若函数y0和y的图象有且只有一个公共点,求c的取值范围. 展开
 我来答
time张士强
推荐于2017-08-11 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1902
采纳率:78%
帮助的人:342万
展开全部



手机用户84244
推荐于2016-07-14 · 超过70用户采纳过TA的回答
知道答主
回答量:139
采纳率:100%
帮助的人:67.2万
展开全部
(1)联立
y=2x
y=?x+6

解得
x=2
y=4

所以,y0=
2x(x≤2)
?x+6(x≥2)

(说明:两个自变量取值范围都含有等号或其中一个含等号均不扣分,都没等号扣1分)

(2)∵对函数y0,当y0随x的增大而减小,
∴y0=-x+6(x≥2),
又∵函数y的对称轴为直线x=4,且a=1>0,
∴当x≤4时,y随x的增大而减小,
∴2≤x≤4;

(3)①若函数y=x2-8x+c与y0=-x+6只有一个交点,且交点在2<x<4范围内,
则x2-8x+c=-x+6,
即x2-7x+(c-6)=0,
△=73-4c=0,
解得c=18
1
4

此时x1=x2=
7
2
,符合2<x<4,
所以,c=18
1
4

②若函数y=x2-8x+c与y0=-x+6有两个交点,其中一个在2≤x≤4范围内,另一个交点在2≤x≤4范围外,
则△=73-4c>0,
解得c<18
1
4

方法一:对于y0=-x+6,当x=2时,y0=4,
当x=4时,y0=2,
又∵当2≤x≤4时,y随x的增大而减小,
若y=x2-8x+c与y0=-x+6在2<x<4内有一个交点,
则当x=2时,y>y0,当x=4时,y<y0
即当x=2时,y≥4;当x=4,时y≤2,
也就是
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消