13个回答
2021-11-13 · 知道合伙人教育行家
关注
展开全部
分享一种解法,①无穷大量。应用二项展开式,再求极限。(n-1)^β=(n^β)-β[n^(β-1)]+[β(β-1)/2][n^(β-2)]-…+[(-1)^β]。
∴原式=lim(n→∞){β[n^(β-1)]-[β(β-1)/2][n^(β-2)]+…-[(-1)^β]}/n^α=lim(n→∞)β[n^(β-α-1)]-[β(β-1)/2][n^(β-α-2)]+…-[(-1)^β]/n^α。
显然,按题设条件、要极限存在,须有β-α-1=0,β=2010。∴α=β-1=2009。
②无穷小量。(n-1)^β=(n^β)(1-1/n)^β。1/n→0,(1-1/n)^β=e^[βln(1-1/n)]~e^(-β/n)~1-β/n。
∴原式=lim(n→∞)β[n^(β-α-1)]=2010。∴β=2010,β-α-1=0。…。
∴原式=lim(n→∞){β[n^(β-1)]-[β(β-1)/2][n^(β-2)]+…-[(-1)^β]}/n^α=lim(n→∞)β[n^(β-α-1)]-[β(β-1)/2][n^(β-α-2)]+…-[(-1)^β]/n^α。
显然,按题设条件、要极限存在,须有β-α-1=0,β=2010。∴α=β-1=2009。
②无穷小量。(n-1)^β=(n^β)(1-1/n)^β。1/n→0,(1-1/n)^β=e^[βln(1-1/n)]~e^(-β/n)~1-β/n。
∴原式=lim(n→∞)β[n^(β-α-1)]=2010。∴β=2010,β-α-1=0。…。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分子展开后最高次是 β-1,系数是β, 因极限存在,所以α=β-1,因极限是2010,有β=2010,α=2009
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询