证明xcosx是不是周期函数
展开全部
取x(k)=2kπ,(k=1,2,3,...)的目的是为了说明y=xcosx在(-∞,+∞)内不是有界的。(因为这样就已经找到了一个x->+∞的方式,在这个方式下y=xcosx不是有界的,可以说明x∈R->+∞一定不是有界的。
但是,在找到的这一个x->+∞的方式下y=xcosx->+∞不能说明该函数在x∈R->+∞时也是趋于无穷大。
事实上,该函数在x∈R->+∞时,是没有极限的。你让x(k)=2kπ+π/2->+∞就会发现了它趋于0.由极限的唯一性得到该函数没有极限。
cosx≤1 那他的最大值是1,无论x等于多少
那xcosx最大也就是x了
所以当x→+∞,应该也是正无穷吧
但是,在找到的这一个x->+∞的方式下y=xcosx->+∞不能说明该函数在x∈R->+∞时也是趋于无穷大。
事实上,该函数在x∈R->+∞时,是没有极限的。你让x(k)=2kπ+π/2->+∞就会发现了它趋于0.由极限的唯一性得到该函数没有极限。
cosx≤1 那他的最大值是1,无论x等于多少
那xcosx最大也就是x了
所以当x→+∞,应该也是正无穷吧
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询