求定积分∫xe^x^2dx
∫xe^(x^2)dx=0.5∫e^(x^2)d(x^2)=0.5e^(x^2)+C。
这是一个不定积分。
不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
扩展资料:
不定积分的求解方法
积分公式法
直接利用积分公式求出不定积分。
换元积分法
换元积分法可分为第一类换元法与第二类换元法。
一、第一类换元法(即凑微分法)
通过凑微分,最后依托于某个积分公式。进而求得原不定积分。例如
二、注:第二类换元法的变换式必须可逆,并且ψ(x)在相应区间上是单调的。
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:
1、 根式代换法,
2、 三角代换法。
在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。
链式法则是一种最有效的微分方法,自然也是最有效的积分方法,下面介绍链式法则在积分中的应用:
链式法则:
我们在写这个公式时,常常习惯用u来代替g,即:
如果换一种写法,就是让:
就可得:
这样就可以直接将dx消掉,走了一个捷径。
定积分的性质
1、当a=b时,
2、当a>b时,
3、常数可以提到积分号前。
4、代数和的积分等于积分的代数和。
5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有
又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件。
6、如果在区间[a,b]上,f(x)≥0,则
7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在(a,b)内使
参考资料来源:百度百科——不定积分
∫xe^(x^2)dx=0.5∫e^(x^2)d(x^2)=0.5e^(x^2)+C。
记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。
扩展资料
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
=1/2e^(x^2)+C
这道题关键是凑微分