复变函数问题,求解析函数

 我来答
余弘博0n
2017-09-16 · TA获得超过2902个赞
知道大有可为答主
回答量:3313
采纳率:0%
帮助的人:663万
展开全部
根据v的表达式得到其对y的偏导数为
vy=-2;
根据柯西-黎曼方程得到ux=vy=-2;
上式对x积分,得到u=-2x+C(y)。
上式对y求导,得到uy=C'(y);
另外,根据v的表达式,对x的偏导数为
vx=4x+1,
根据柯西-黎曼方程有uy=-vx,即
C'(y)=4x+1.
这显然不可能成立。所以不存在这样的解析函数f,使得f=u+iv(其中u是实函数)。
其实单独从v的表达式来看,其对x的二阶偏导数为4,对y的二阶偏导数为0,两者之和不等于0,所以v 不是调和函数,因此v不可能是某个解析函数的虚部或者实部。
sumeragi693
高粉答主

2017-09-17 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.8万
采纳率:79%
帮助的人:1.7亿
展开全部
因为解析函数的虚部是实部的共轭调和函数,所以只需要求出与u共轭的调和函数就行了

根据柯西黎曼方程,
∂u/∂x=∂v/∂y=3x²+12yx-3y²
於是对y进行积分,v=3x²y+6xy²-y³+C(x)
而∂v/∂x=-∂u/∂y=-6x²+6xy+6y²
於是把v=3x²y+6xy²-y³+C(x)两边对x求导
∂v/∂x=6xy+6y²+C'(x)
比较∂v/∂x=-6x²+6xy+6y²可知,C'(x)=-6x²,C(x)=-2x³+C
於是v=-2x³+3x²y+6xy²-y³+C
而f(0)=f(0+0i)=u(0,0)+iv(0,0)=0
即0+iC=0,C=0
∴f(z)=x³+6x²y-3xy²-2y³+i(-2x³+3x²y+6xy²-y³)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式