复变函数求收敛半径

复变函数求收敛半径答案是二分之根号二,求过程... 复变函数求收敛半径答案是二分之根号二,求过程 展开
 我来答
农村人说数码
高粉答主

2021-08-12 · 关注我不会让你失望
知道小有建树答主
回答量:1881
采纳率:100%
帮助的人:80.2万
展开全部

求法:

根据根值审敛法,则有柯西-阿达马公式。或者,复分析中的收敛半径将一个收敛半径是正数的幂级数的变量取为复数,就可以定义一个全纯函数。最近点的取法是在整个复平面中,而不仅仅是在实轴上,即使中心和系数都是实数时也是如此。


函数知识:

设ƒ(z)是A上的复变函数,α是A中一点。如果对任一正数ε,都有正数δ,当z∈A且|z-α|<δ时,|ƒ(z)-ƒ(α)|<ε恒成立,则称ƒ(z)在α处是连续的,如果在A上处处连续,则称为A上的连续函数或连续映射。设ƒ是紧集A上的连续函数,则对任一正数ε,必存在不依赖自变数z的正数δ,当z1,z2∈A且|z1-z2<δ时|ƒ(z1)-ƒ(z2)|<ε恒成立。这个性质称为ƒ(z)在A上的一致连续性或均匀连续性。

设(z)是平面开集D内的复变函数。对于z∈D,如果极限存在且有限,则称(z)在z处是可导的,此极限值称为(z)在z处的导数,记为'(z)。这是实变函数导数概念的推广,但复变函数导数的存在却蕴含着丰富的内容。这是因为z+h是z的二维邻域内的任意一点,极限的存在条件比起一维的实数情形要强得多。

一个复变函数如在z的某一邻域内处处有导数,则该函数必在z处有高阶导数,而且可以展成一个收敛的幂级数(见解析函数)。所以复变函数导数的存在,对函数本身的结构有重大影响,而这些结果的研究,构成了一门学科──复变函数论。

以上内容参考:百度百科-复变函数

火虎生活小达人
高能答主

2021-01-12 · 致力于成为全知道最会答题的人
知道大有可为答主
回答量:5246
采纳率:100%
帮助的人:168万
展开全部

求法:

根据根值审敛法,则有柯西-阿达马公式。或者,复分析中的收敛半径将一个收敛半径是正数的幂级数的变量取为复数,就可以定义一个全纯函数。最近点的取法是在整个复平面中,而不仅仅是在实轴上,即使中心和系数都是实数时也是如此。

扩展资料:

具体来说,当 z和 a足够接近时,幂级数就会收敛,反之则可能发散。收敛半径就是收敛区域和发散区域的分界线。在 |z- a| = r的收敛圆上,幂级数的敛散性是不确定的:对某些 z可能收敛,对其它的则发散。如果幂级数对所有复数 z都收敛,那么说收敛半径是无穷大。

在零处的泰勒展开为:运用达朗贝尔审敛法可以得到它的收敛半径为1。与此相应的,函数在 ±i存在奇点,其与原点0的距离是1。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fin3574
高粉答主

2018-05-30 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134623

向TA提问 私信TA
展开全部

如图所示:

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式