对矩阵A,求可逆矩阵P使P^(-1)AP为对角阵,且写出这对角阵. A=5 -1 3 -1 5 -3 3 -3 3 我来答 1个回答 #热议# 生活中有哪些实用的心理学知识? 世纪网络17 2022-06-09 · TA获得超过5933个赞 知道小有建树答主 回答量:2426 采纳率:100% 帮助的人:140万 我也去答题访问个人页 关注 展开全部 根据题意,A可以相似对角化,等价于存在可逆阵P 使P^-1AP=D为对角矩阵,D的对角线元素为A的三个特征值(特征值求法|nE-A|=0,解x),P的三个列向量依次为三个特征值对应的特征向量,特征向量求法由前边已经解得的n ,得到... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2021-10-27 设矩阵A= 求一个可逆矩阵P,使P-1 AP为对角阵,并给出该对角阵 3 2021-09-26 已知矩阵[1,0,0;0,2,1;0,1,2],求可逆矩阵P,使得P^-1AP为对角阵,并求A^m 1 2022-07-05 对矩阵A,求可逆矩阵P使P^(-1)AP为对角阵,且写出这对角阵.A=-1 -2 2 / 0 1 0 / 0 0 1 2022-06-21 已知矩阵A,求可逆阵P,使得(P^-1)AP为对角阵 A= [2,0,0 0,1,-1 0,-1,1] 2023-12-24 已知矩阵A=(4 6 0 -3 -5 0 -3 -6 1), 求可逆矩阵p,使P^-1AP为对角矩 2022-06-29 设矩阵A=上:(3 -2)下:(1 0),求可逆矩阵p及对角阵A,使p负一次方AP=A 2022-11-18 设A=(4 0 1 23 2 1 0 4)(1)求可逆矩阵P及对角形矩阵A使得P^(-1)AP=A 2022-05-23 矩阵A 求可逆矩阵P 使得P^-1AP是对角矩阵 并写出这一对角矩阵 为你推荐: