在△ABC中已知b2=ac,a2-c2=ac-bc,求∠A及c分之bsinB的值
1个回答
展开全部
因为b^2=ac,所以a^2=ac-bc+c^2=b^2+c^2-bc
由余弦定理得a^2=b^2+c^2-2bccosA 得两式右侧相等,最终化简,
结果为cosA=0.5,所以角A为60°
因为b^2=ac,所以b/c=a/b,所以bsinB/c=asinB/b,
由正弦定理,的sinB/b=sinA/a,所以bsinB/c=asinB/b=asinA/a=sinA=二分之根号三
由余弦定理得a^2=b^2+c^2-2bccosA 得两式右侧相等,最终化简,
结果为cosA=0.5,所以角A为60°
因为b^2=ac,所以b/c=a/b,所以bsinB/c=asinB/b,
由正弦定理,的sinB/b=sinA/a,所以bsinB/c=asinB/b=asinA/a=sinA=二分之根号三
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询