初中函数入门基础知识点汇总
数学函 数 是一个比较难的知识点,下面我就大家整理一下初中函数入门基础知识点汇总,仅供参考。
函数的有关概念
(1)函数:在某一变化过程中,如果有两个变量x,y,并且对于x在某一范围内的每一个确定的值,y都有唯一确定的值与其对应,那么就说y是x的函数,x叫做自变量。
(2)函数自变量的取值范围函数自变量的取值范围应使函数解析式有意义;应用问题中,自变量的取值范围还应具有实际意义;求函数自变量的取值范围的过程,实质上是解不等式或不等式组的过程;
(3)常见自变量的取值范围:分式型:分母不为0;二次根式型:被开方数大于等于0;分式、二次根式混合型:分母不为0,且被开方数大于等于0.
(4)函数值:当函数自变量x取某一数值时,与之对应的唯一确定的y值,叫做这个函数当函数自变量取该值时的函数数值。
一次函数知识点一、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b (k为任意不为零的实数 b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。