柯西不等式一般形式是什么?

 我来答
社无小事
高能答主

2022-01-07 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20416

向TA提问 私信TA
展开全部

柯西不等式的一般形式是:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2(当且仅当a:c=b:d时取等号)。

在数学中,柯西不等式(Cauchy-Schwarz inequality)在线性代数、数学分析、概率论等领域中都是非常有用的不等式,它被认为是数学中最重要的不等式之一。

柯西不等式基本题型分别是:

1、二维形式:

(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2

等号成立条件:ad=bc

2、三角形式:

√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]

等号成立条件:ad=bc

3、一般形式:

(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2

等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式