柯西不等式一般形式是什么?
1个回答
展开全部
柯西不等式的一般形式是:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2(当且仅当a:c=b:d时取等号)。
在数学中,柯西不等式(Cauchy-Schwarz inequality)在线性代数、数学分析、概率论等领域中都是非常有用的不等式,它被认为是数学中最重要的不等式之一。
柯西不等式基本题型分别是:
1、二维形式:
(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2
等号成立条件:ad=bc
2、三角形式:
√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]
等号成立条件:ad=bc
3、一般形式:
(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2
等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询