拉格朗日余项的泰勒公式是什么?

 我来答
社无小事
高能答主

2022-01-10 · 认真答题,希望能帮到你
社无小事
采纳数:2168 获赞数:20437

向TA提问 私信TA
展开全部

拉格朗日(Lagrange)余项:

其中θ∈(0,1),拉格朗日余项实际是泰勒公式展开式与原式之间的一个误差值,如果其值为无穷小,则表明公式展开足够准确。

带拉格朗日余项的麦克劳林公式是带拉格朗日余项的泰勒公式在x0=0时的形式,泰勒公式的意义是把复杂的函数简单化,即化成多项式函数,泰勒公式是在任何点的展开形式。   

相关信息:

泰勒公式是数学分析中重要的内容,也是研究函数极限和估计误差等方面不可或缺的数学工具,泰勒公式集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。

利用泰勒公式可以将非线性问题化为线性问题,且具有很高的精确度,因此其在微积分的各个方面都有重要的应用,泰勒公式可以应用于求极限、判断函数极值、求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式