求圆的轨迹方程
1个回答
展开全部
直接法
由题设所给的动点满足的几何条件列出等式,再把坐标代入并化简,得到所求轨迹方程,这种方法叫做直接法。
例1已知动点P到定点F(1,0)和直线x=3的距离之和等于4,求点P的轨迹方程。
解:设点P的坐标为(x,y),则由题意可得。
(1)当x≤3时,方程变为,化简得。
(2)当x>3时,方程变为,化简得。
故所求的点P的轨迹方程是或。
二、定义法
由题设所给的动点满足的几何条件,经过化简变形,可以看出动点满足二次曲线的定义,进而求轨迹方程,这种方法叫做定义法。
例2已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。
解:设动圆的半径为R,由两圆外切的条件可得:,。
。
∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,c=4,a=2,b2=12。
故所求轨迹方程为。
三、待定系数法
由题意可知曲线类型,将方程设成该曲线方程的一般形式,利用题设所给条件求得所需的待定系数,进而求得轨迹方程,这种方法叫做待定系数法。
例3已知双曲线中心在原点且一个焦点为F(,0),直线y=x-1与其相交于M、N两点,MN中点的横坐标为,求此双曲线方程。
解:设双曲线方程为。将y=x-1代入方程整理得。
由韦达定理得。又有,联立方程组,解得。
∴此双曲线的方程为。
四、参数法
选取适当的参数,分别用参数表示动点坐标,得到动点轨迹的参数方程,再消去参数,从而得到动点轨迹的普通方程,这种方法叫做参数法。
例4过原点作直线l和抛物线交于A、B两点,求线段AB的中点M的轨迹方程。
解:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx。把它代入抛物线方程,得。因为直线和抛物线相交,所以△>0,解得。
设A(),B(),M(x,y),由韦达定理得。
由消去k得。
又,所以。
∴点M的轨迹方程为
我只有这四种,应付高中数学足够了
由题设所给的动点满足的几何条件列出等式,再把坐标代入并化简,得到所求轨迹方程,这种方法叫做直接法。
例1已知动点P到定点F(1,0)和直线x=3的距离之和等于4,求点P的轨迹方程。
解:设点P的坐标为(x,y),则由题意可得。
(1)当x≤3时,方程变为,化简得。
(2)当x>3时,方程变为,化简得。
故所求的点P的轨迹方程是或。
二、定义法
由题设所给的动点满足的几何条件,经过化简变形,可以看出动点满足二次曲线的定义,进而求轨迹方程,这种方法叫做定义法。
例2已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。
解:设动圆的半径为R,由两圆外切的条件可得:,。
。
∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,c=4,a=2,b2=12。
故所求轨迹方程为。
三、待定系数法
由题意可知曲线类型,将方程设成该曲线方程的一般形式,利用题设所给条件求得所需的待定系数,进而求得轨迹方程,这种方法叫做待定系数法。
例3已知双曲线中心在原点且一个焦点为F(,0),直线y=x-1与其相交于M、N两点,MN中点的横坐标为,求此双曲线方程。
解:设双曲线方程为。将y=x-1代入方程整理得。
由韦达定理得。又有,联立方程组,解得。
∴此双曲线的方程为。
四、参数法
选取适当的参数,分别用参数表示动点坐标,得到动点轨迹的参数方程,再消去参数,从而得到动点轨迹的普通方程,这种方法叫做参数法。
例4过原点作直线l和抛物线交于A、B两点,求线段AB的中点M的轨迹方程。
解:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx。把它代入抛物线方程,得。因为直线和抛物线相交,所以△>0,解得。
设A(),B(),M(x,y),由韦达定理得。
由消去k得。
又,所以。
∴点M的轨迹方程为
我只有这四种,应付高中数学足够了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |