怎么证明:(1+X)^n>1+nX这个式子?

 我来答
苌烨用香彤
2020-07-27 · TA获得超过1031个赞
知道小有建树答主
回答量:1801
采纳率:100%
帮助的人:9.9万
展开全部
对(1+X)^n进行二项展开,等于x^n+nx+……+1,大于1+nX
二项展开的通式:
(x + a)^n = x^n + nax^(n-1) + n(n-1)a^2x^(n-2)/2 + ...+ n!/[k!(n-k)!]a^kx^(n-k) + ...+ nxa^(n-1) + a^n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式