已知幂函数f(x)=x^(m^2-2m-3),m属于Z为偶函数,且区间(0,正无穷大)上是减函数,求y的解析式并讨论单调性
展开全部
1、为偶函数,则m²-2m-3为偶数,
在区间(0,正无穷)上是单调减函数,则有m²-2m-3<0,即-1<m<3,
m∈Z,m=0或1或2
只有当m=1时,m²-2m-3=-4为偶数,此时f(x)=x^(-4)
2、由题意F(x)=a[x^(-4)]^(1/2)-b/[x*x^(-4)]=ax^(-2)+bx^3,
a=0且b≠0时F(x)=bx^3,为奇函数
b=0且a≠0时F(x)=ax^(-2),为偶函数
当a,b都不为零时,F(x)既不是奇函数又不是偶函数
当a,b都为零时,F(x)既是奇函数又是偶函数
在区间(0,正无穷)上是单调减函数,则有m²-2m-3<0,即-1<m<3,
m∈Z,m=0或1或2
只有当m=1时,m²-2m-3=-4为偶数,此时f(x)=x^(-4)
2、由题意F(x)=a[x^(-4)]^(1/2)-b/[x*x^(-4)]=ax^(-2)+bx^3,
a=0且b≠0时F(x)=bx^3,为奇函数
b=0且a≠0时F(x)=ax^(-2),为偶函数
当a,b都不为零时,F(x)既不是奇函数又不是偶函数
当a,b都为零时,F(x)既是奇函数又是偶函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
m^2-2m-3=a,a为负偶数 (m-1)^2=a+2 a+2>=0 a=-2
y=x^-2 函数在 (0,正无穷大)上是减函数,在(-无穷,0)单调递增
y=x^-2 函数在 (0,正无穷大)上是减函数,在(-无穷,0)单调递增
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询