高数如何判断无穷小的阶数?
1个回答
展开全部
判断如下:
设这个函数是f(x),则计算极限lim(x->0) f(x)/x^n,如果当n=p-1时,极限值=0。当n=p时,极限值=常数,则可以判断,f(x)是x^p的同阶无穷小,当这个常数=1时,f(x)是x^p的等价无穷小。
无穷小是数学分析中的一个概念,用以严格定义诸如“最终会消失的量”、“绝对值比任何正数都要小的量”等非正式描述,即以数0为极限的变量,无限接近于0。根据常数所对应的阶数就可以看出是几阶无穷小。
简介:
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。
无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询