求下列函数的偏导数:设z=(3x²+y²)^4x+2y,求∂z/∂x和∂z/∂y

 我来答
tllau38
高粉答主

2022-08-27 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
z=(3x^2+y^2)^(4x+2y)
lnz =(4x+2y)ln(3x^2+y^2)
∂/∂x(lnz)=∂/∂x[(4x+2y)ln(3x^2+y^2)]
(1/z).∂z/∂x =(4x+2y).∂/∂x[ln(3x^2+y^2)] +ln(3x^2+y^2).∂/∂x(4x+2y)
(1/z).∂z/∂x =(4x+2y).[6x/(3x^2+y^2)] +ln(3x^2+y^2).(4)
∂z/∂x =[6x(4x+2y)/(3x^2+y^2) +4ln(3x^2+y^2)].(3x^2+y^2)^(4x+2y)
同样的
∂z/∂y =[2y(4x+2y)/(3x^2+y^2) +2ln(3x^2+y^2)].(3x^2+y^2)^(4x+2y)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2022-08-27
展开全部
u = 3x²+y²
v = 4x+2y
z = u^v
∂z/∂(u, v) = (v*u^(v-1), u^v * ln(u))
∂(u, v)/∂(x, y) = (6x, 2y; 4, 2)
∂z/∂(x, y) = (∂z/∂(u, v) )·(∂(u, v)/∂(x, y))
= (v*u^(v-1)*6x + u^v * 4ln(u), v*u^(v-1)*2y + u^v * 2ln(u))
= u^(v-1) (6xv + 4u ln(u), 2yv + 2u ln(u))
= 2*(3x²+y²)^(4x+2y-1) (3x(4x+2y)+2(3x²+y²)ln(3x²+y²), y(4x+2y)+(3x²+y²)ln(3x²+y²))
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式