证明:若x>0,y>0,x+y=1,则(x+1/x)(y+1/y)≥25/4

 我来答
大沈他次苹0B
2022-06-30 · TA获得超过7328个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:178万
展开全部
(x+1/x)(y+1/y)=xy+1/xy+x/y+y/x=xy+1/xy+(x^2+y^2)/xy=xy+1/xy+[(x+y)^2-2xy]/xy=xy+1/xy+(1-2xy)/xy=xy+2/xy-2设t=xyxy≤(x+y)^2/4=1/4所以0≤t≤1/4t+2/t在(0,√2]上递减,在[√2,+∞)上递增(x+1/x)(y+1/y)=xy+2/x...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式