七、函数的单调性与凹凸性

 我来答
天罗网17
2022-07-14 · TA获得超过6151个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:71.2万
展开全部

函数单调性判定法:

由上可知我们可由导数f'(x)的正负性来判断函数单调性,此外函数单调性改变往往发生在驻点(f'(x)=0)和导数不存在点,因此可以先根据这两类点来划分区间,再讨论单调性。

(从上面图形可以看到凹函数的切线斜率是单调递增的,凸函数是单调递减,结合函数单调性判定可得。)
此外函数凹凸性改变往往发生在拐点(f''(x)=0)和二阶导数不存在点(其实也可以叫拐点),因此可以先根据这两类点来划分区间,再讨论凹凸性。

可导函数极值性质:

函数极值判定方法一:

上述定理描述的是x渐进并经过x0时,如果导数由正到负则x0处取到局部最大值,由负到正x0取到局部最小值。
求解法:

求解法:

注:这个不是充要条件,一阶导为零,二阶导也为零,函数同样可能取到极值。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式