工程数学指哪几门课程,

 我来答
舒适还明净的海鸥i
2022-05-30 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70.6万
展开全部
常微分方程式(O.D.E.)

微分方程式绪论
一阶常微分方程式
分离变数法
齐次方程式
正合方程式
合并积分法
一阶线性常微分方程式
白努力微分方程式与李卡迪微分方程式
参数变更法
高次非线性O.D.E.之奇解与通解
解之存在性与唯一性
皮卡迭代法
二(高)阶常系数线性微分方程式
线性独立与Wronskian行列式
二(高)阶常系数线性微分方程式
二(高)阶变系数线性微分方程式
柯西等维方程式
观察齐性解(参数变更法)
高阶正合方程式
因变数变更(参数变更)
自变数变更
非线性微分方程式
联立线性O.D.E.
常微分方程式之级数解
基本定义
O.D.E.之幂级数解法『泰勒级数』
O.D.E.之Forbenius级数解法
特殊定义之函数
『微积分第一定理』与『莱布尼兹法则』
Unit Step Function
Delta Function
Beta Function
拉卜拉斯变换(Laplace Transform)
拉卜拉斯变换与其逆转换
基本运算定理
周期函数之拉
卜拉斯变换
以Laplace transform解O.D.E.
以Laplace transform解联立O.D.E.
以Laplace transform解无界限且边界条件与距离无关之O.D.E.
以Laplace transform解积分方程式
Bessel 与 Legendre 函数
Bessel方程式与Bessel函数
Bessel O.D.E.之推广型O.D.E.
Bessel函数之性质
Legendre方程式
Legendre多项式(函数)之性质
Sturm-Liouville 边界值问题
基础观念
Reqular(规则型)Sturm-Liouville
B.V.P. Periodic(周期型)Sturm-Liouville
B.V.P. 函数的内积与正交性
史特姆-李维尔定理(Sturm-Liouville theorem)
广义之Fourier级数
傅立叶级数与积分
傅立叶级数
奇、偶函数之傅立叶级数
半幅展开与全幅展开 复数型之傅立叶级数
傅立叶积分与傅立叶转换
Fourier变换之基本性质
以Fourier分析解微分方程式
--------------------------------------------------------------------------------
GO TO TOP
偏微分方程式(P.D.E.)
P.D.E(I)卡氏座标之热传与波动偏微分方程式
基础观念
规则型齐性P.D.E.之分离变数法
非齐性P.D.E.之暂态、稳态解
非齐性但仅P.D.E.与时间有关
非齐性但全与时间有关
无界域齐性P.D.E.
P.D.E(II)卡氏座标之Laplace方程式
齐性规则P.D.E.
齐性无穷型P.D.E.
非齐性Laplace P.D.E.0
P.D.E.(III)极座标、圆柱座标与球座标
极座标之Laplace P.D.E.
极座标之热传导 P.D.E.与波动
P.D.E. 圆柱座标之Laplace
P.D.E. 球座标之Laplace P.D.E.
P.D.E.(IV)一阶Lagrange方程组与二阶偏微分方程式
一阶Lagrange方程组
常系数P.D.E.
D'Alembert波动方程式解
线性二阶P.D.E.之分类与解法
变数结合法
--------------------------------------------------------------------------------
GO TO TOP
向量分析
向量之基本运算
向量代数
向量之微积分
曲线之微分及弧长(arc length)
多变函数之微分
方向导数与梯度
向量几何(the Geometry of Vector)
向量积分
重积分
线积分与Green定理
曲面积分
散度、旋度与运算子
高斯散度定理(Gauss Divergence Theorem)
Stock定理
Green恒等式(Green's Indentity)
--------------------------------------------------------------------------------
GO TO TOP
复变分析
复变与复变函数
复数
复数平面与极座标
复变函数
多变函数之分支点与分支切割
复数之极限与微分
极限
微分与解析
Cauchy-Riemann方程式
复数积分
复数积分
Cauchy积分定理
Cauchy积分公式
复数级数
复数级数
幂级数与Taylor级数
Laurent级数
孤立奇点之种类
留数定理
留数(residue)
留数定理(residue theorem)
无穷远处之留数
三角函数定积分
有理函数瑕积分
Fourier积分(变换)
多值函数瑕积分
特殊路径之取法
保角映射
映射(mapping)
保角映射(conformal mapping)
双线性转换
--------------------------------------------------------------------------------
GO TO TOP
线性代数
矩阵与线性联立方程式
矩阵与基本运算
方阵与方阵函数
线性联立方程式与Gauss消去法
逆矩阵与Gauss消去法
Gauss 消去法与基本矩阵
行列式
行列式
分割矩阵之行列式
伴随矩阵与余因子
克拉马法则
基底与维度
线性独立与线性相依
矩阵的秩
线性联立方程式与基的关系
特徵值问题
预备知识
特徵值与特徵向量
方阵函数f(A)之特徵值与特徵向量
特徵值之四则运算
Cayley-Hamilton定理及其应用
对角化理论及其应用
矩阵的相似性
矩阵之对角化
代数重数、几何重数与可对角化的条件
对角化理论之应用
解线性常系数联立微分方程式
乔登正则式
正交、正规矩阵与二次的应用
矩阵之内积与Gram-Schmidt正交化法
正交矩阵与正交对角化
么正对角化与正规矩阵集
正交矩阵在二次式之应用
--------------------------------------------------------------------------------
GO TO TOP
微积分
极限与连续
极限
三角函数之极限
高斯函数之极限
连续
与『连续』有关之定理
渐近线
微分
导数 (the Derivative)
特殊点的微分
基础可微函数与微分基本性质
隐函数微分法 (Implicit Differentiation)
反函数微分
指数函数与对数函数之微分
双曲线三角函数
高阶导函数
微分的应用
罗必达法则(L`Hospital Rule)
微分定理
增减、凹凸与极值
微分在作图上的应用
近似值与牛顿近似根去
积分的方法
套用公式法
第一类有理函数(分母仅含一次因式)
变数变换
积分之连锁律
第二类有理函数(分母含二次因式)
分部积分法 (Part Integral)
三角函数积分法
无理函数三角代换法
半角代换法
积分方法总复习练习题
定积分
黎曼和与积分型极限
定积分
特殊的三角函数积分
积分基本定理
瑕积分 (Improper Integral)
Gamma函数与Beta函数
积分之应用
面积
弧长 (arc length)
平面之形心(centroid)、重心
体积(volume)
旋转体之表面积
重积分
二重积分
二重积分之Dirichlet积分变换
重积分之座标变换
极座标之重积分
三重积分
质心、重心
非旋转体之曲面表面积
数列与级数
数列(sequence)
级数 (series)
正项级数之敛散性
交错级数 (Alternating Series)
幂级数之收敛区域
泰勒定理与泰勒级数
泰勒级数在『高阶导数』上的应用
泰勒级数在积分上的应用
向量
向量之基本运算
方向导数与梯度
向量几何(the Geometry of Vector)
向量积分(作功)与Green定理
散度定理与Stoke定理
多变函数
多变函数之极限与连续
偏导数 (partial derivative)
多变函数之极值
微分方程式
一阶分离变数法
一阶线性常微分方程式
二(高)阶常系数O.D.E.之齐性解
二(高)阶常系数O.D.E.之特解
尤拉-柯西等维方程式(Euler-Cauchy equation)
--------------------------------------------------------------------------------
GO TO TOP
电机线代
几何向量空间(R2与R3空间)
题型一:点积(内积)与投影量
题型二:叉积(外积)与面积
题型三:纯量三重积与体积
题型四:空间上的直线与平面
矩阵与线性联立方程式
矩阵与矩阵的基本运算
方阵与方阵的代数
线性联立方程式与Gauss消去法
逆矩阵与Gauss消去法
Gauss消去法与基本矩阵(elementary matrix)
方阵之LU分解
行列式
行列式
分割矩阵之行列式
伴随矩阵(adjoint)与余因子(cofactor)
克拉马法则(Cramer Rule)
向量空间
欧几里德空间
向量空间
子空间与生成空间
和空间与直和空间
基底与维度
线性独立与线性相依
基底与维度
矩阵的秩
线性联立方程式与基底的关系
线性映射
线性映射
线性映射之像集与核空间
线性映射的合成与逆映射
同构空间上矩阵的秩
座标变换与换底公式
特徵值问题
特徵值与特徵向量
题型一:2 2型
题型二:3 3且特徵值无重根型
题型三:3 3且特徵值有重根型
方阵函数 之特徵值与特徵向量
特徵值之四则运算
Cayley-Hamilton定理及其应用
最小(最低)多项式
特徵空间
对角化理论及其应用
矩阵的相似性
矩阵之对角化
代数重数、几何重数与可对角化的条件
对角化理论之应用
题型一:求方阵多项式
题型二:求方阵函数
题型三:解矩阵方程式
题型四:解矩阵的递回式与极限
解线性常系数联立微分方程式
题型一:一阶齐性 =Ax
题型二:二阶齐性 =Ax
题型三:非齐性 =Ax+G
乔登正则式
题型一:直接求Jordan form
题型二:求方阵多项式
题型三:求方阵函数
题型四:解线性常系数联立微分方程式
内积空间
内积空间的定义
矩阵之内积与Gram-Schmidt正交化法
方阵之QR分解
正交投影
正交补集
正规、正交运算子与正规、正交矩阵
伴随运算子(adjoint operator)
正规运算子与自伴随运算子
正规矩阵集
正交运算子与么正运算子
正交对角化与么正对角化
矩阵的范数(norm)
Householder转换
光谱分解与奇异值分解
二次式及其应用
二次式与矩阵的正定、半正定特性
二次式的应用(I):主轴定理与重积分
二次式的应用(II):Rayleigh原理与二次式的极值
--------------------------------------------------------------------------------
GO TO TOP
电机机率
排列组合
排列
组合
机率导论
古典机率论
集合论
机率空间
机率基本定理
条件机率与独立事件
条件机率与贝氏定理(Bayes theorem)
随机变数与机率分配
随机变数
机率分配
期望值与变异数
联合机率分配函数
随机变数之函数与转换
动差与动差不等式
期望值与动差
动差与动差生成函数
马可夫不等式与柴比雪夫不等式
离散机率模型
均匀分配
白努力(Bernoulli)分配
二项分配
超几何分配
多项分配
几何分配
负二项分配
卜瓦松(Poisson)分配
连续机率模型
均匀分配
常态分配
指数分配
Gamma分配
就这是这些捏.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式