已知sin2a+sina=0,a∈(兀/2,兀),tan(a+兀/4)=?
1个回答
展开全部
A∈(π, 2π)
sin2A+sinA=0
2sinA.cosA + sinA=0
sinA.(2cosA+1)=0
cosA = -1/2 or sinA=0 (rej)
cosA=-1/2
A=4π/3
tan(A+π/4)
=[tanA+tan(π/4)]/[1-tanA.tan(π/4)]
=[tan(4π/3)+1]/[1-tan(4π/3)]
=(1+√3)/(1-√3)
=(1+√3)(1+√3)/(-2)
=-2-√3
sin2A+sinA=0
2sinA.cosA + sinA=0
sinA.(2cosA+1)=0
cosA = -1/2 or sinA=0 (rej)
cosA=-1/2
A=4π/3
tan(A+π/4)
=[tanA+tan(π/4)]/[1-tanA.tan(π/4)]
=[tan(4π/3)+1]/[1-tan(4π/3)]
=(1+√3)/(1-√3)
=(1+√3)(1+√3)/(-2)
=-2-√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询