数学九年级下册二次函数知识点

 我来答
四季教育17
2022-06-23 · TA获得超过5671个赞
知道大有可为答主
回答量:5408
采纳率:99%
帮助的人:268万
展开全部

   二次函数的定义

  一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.

  注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;

  (2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;

  (3)当b=c=0时,二次函数y=ax2是最简单的二次函数;

  (4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.

   二次函数y=ax2的图象和性质

  (1)函数y=ax2的图象是一条关于y轴对称的曲线,这条曲线叫抛物线.实际上所有二次函数的图象都是抛物线.

  二次函数y=ax2的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0).

  ①当a>0时,抛物线y=ax2的开口向上,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升,顶点是抛物线上位置最低的点,也就是说,当a>0时,函数y=ax2具有这样的性质:当x0时,函数y随x的增大而增大;当x=0时,函数y=ax2取最小值,最小值y=0;

  ②当a<0时,抛物线y=ax2的开口向下,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点是抛物线上位置最高的点.也就是说,当a<0时,函数y=ax2具有这样的性质:当x0时,函数y随x的增大而减小;当x=0时,函数y=ax2取最大值,最大值y=0;

  ③当|a|越大时,抛物线的开口越小,当|a|越小时,抛物线的开口越大.

  (2)二次函数y=ax2的表达式的确定

  因为二次函数y=ax2中只含有一个需待定的系数a,所以只需给出x与y的一对对应值即可求出a的值.

   抛物线与x轴交点个数

  Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

  Δ= b^2-4ac<0时,抛物线与x轴没有交点。

   数学整式的重要知识点

  1.整式:整式为单项式和多项式的统称。

  2.整式加减

  整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。

  (1)去括号:几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  如果括号外的因数是正数,去括号后原括号内的符号与原来相同。

  如果括号外的因数是负数,去括号后原括号内的符号与原来相反。

  (2)合并同类项:

  合并同类项后,所得项的系数是合并前各项系数的和,且字母部分不变。

  3.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

  4.多项式:由若干个单项式相加组成的代数式叫做多项式。

  5.同底数幂是指底数相同的幂。

  6.同底数幂的乘法:同底数幂相乘,底数不变,指数相加

  7.幂的乘方法则:幂的乘方,底数不变,指数相乘。

  8.积的乘方:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。

  9.单项式与单项式相乘

  单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

  10.单项式与多项式相乘

  单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

  11.多项式与多项式相乘

  多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

  12.同底数幂的除法:同底数幂相除,底数不变,指数相减。

  13.单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。

  14.多项式除以单项式:多项式除以单项式,先把多项式的每一项分别除以这个单项式,再把所得的商相加。

   初中数学特殊三角函数值

  1.cos30°=根号3/2。

  2.sin260°+cos260°=1.

  3.2sin30°+tan45°=2.

  4.tan45°=1.

  5.cos60°+sin30°=1.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式